2 research outputs found

    Functional analysis of rice bidirectional promoters

    Get PDF
    Bidirectional promoters regulate adjacent genes organized in a divergent fashion (head to head orientation). Several Reports pertaining to bidirectional promoters on a genomic scale exists in mammals. This work provides the essential background on theoretical and experimental work to carry out a genomic scale analysis of bidirectional promoters in plants. A computational study was performed to identify putative bidirectional promoters and the over-represented cis-regulatory motifs from three sequenced plant genomes: rice (Oryza sativa), Arabidopsis thaliana, and Populus trichocarpa using the Plant Cis-acting Regulatory DNA Elements (PLACE) and PLANT CARE databases. Over-represented motifs along with their possible function were described with the help of a few conserved representative putative bidirectional promoters from the three model plants. By doing so a foundation was laid for the experimental evaluation of bidirectional promoters in plants. A novel Agrobacterium tumefaciens mediated transient expression assay (AmTEA) was developed for young plants of different cereal species and the model dicot Arabidopsis thaliana. AmTEA was evaluated using five promoters (six constructs) and two reporter genes, gus and egfp. Efficacy and stability of AmTEA was compared with stable transgenics using the Arabidopsis DEAD-box RNA helicase family gene promoter. AmTEA was primarily developed to overcome the many problems associated with the development of transgenics and expression studies in plants. Finally a possible mechanism for the bidirectional activity of bidirectional promoters was highlighted. Deletion analysis using promoter-reporter gene constructs identified three rice promoters to be bidirectional. Regulatory elements located in the 5’- untranslated regions (UTR) of one of the genes of the divergent gene pair were found to be responsible for their bidirectional ctivit

    Anticancer activity of rice callus suspension culture

    No full text
    A multitude of natural products from plant extracts have been tested for their ability to inhibit the progression of several diseases including cancer. A novel approach of evaluating plant (rice) callus suspension cultures for anticancer activity is reported. The ability of different dilutions of rice callus suspension cultures to inhibit growth of two human cancer cell lines was tested employing varying cell numbers and different incubation times. A crystal violet assay was performed to assess cell viability of the cancer cell lines. Furthermore, microscopic analysis was carried out to determine the effect of the rice callus culture on the morphology of the cancer cells. Rice callus suspension cultures significantly inhibited the growth of human cancer and renal cell lines at densities of 5000 and 10000 cells/mL when incubated for 72 and 96 h. Rice callus suspension culture was more efficient than paclitaxel (Taxol®) and etoposide in selectively killing human colon and renal cancer cell lines compared with a control cell line (human lung fibroblasts). The use of plant callus suspension cultures is a novel approach for inhibiting the growth of cancer cells, which will lead to the development of new agents for selectively killing cancer cells
    corecore